Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
The Journal of Advanced Prosthodontics ; : 65-74, 2019.
Article in English | WPRIM | ID: wpr-742067

ABSTRACT

PURPOSE: To evaluate and compare the effect of different materials and techniques on the shear bond strength of veneering ceramic materials to zirconia. MATERIALS AND METHODS: 136 sintered zirconia cubes were prepared and randomly divided into four study groups according to corresponding methods of surface treatment and materials: GLN (grinding followed by laser scanning using Noritake Cerabien ZR), SLN (sandblasting followed by laser scanning using Noritake Cerabien ZR), GLV (grinding followed by laser scanning using VITA VM 9), and SLV (sandblasting followed by laser scanning using VITA VM 9). Spraying technique was performed to coat the core. Profilometer, SEM, XRD, EDS, universal testing machine, and stereomicroscope were used to record surface roughness Ra, surface morphology, phase transformation, elemental compositions, shear bond strength SBS values, and failure types, respectively. Specimens were investigated in unaged (not immersed in artificial saliva) and aged (stored in artificial saliva for a month) conditions to evaluate SBS values. RESULTS: Grinding and GLN as first and second surface treatments provided satisfactory Ra values in both conditions (1.05 ± 0.24 µm, 1.30 ± 0.21 µm) compared to sandblasting and other groups (P < .05). The group GLN showed the highest SBS values in both conditions (30.97 ± 3.12 MPa, 29.09 ± 4.17 MPa), while group SLV recorded the lowest (23.96 ± 3.60 MPa, 22.95 ± 3.68 Mpa) (P < .05). Sandblasting showed phase transformation from t-m. Mixed failure type was the commonest among all groups. CONCLUSION: GLN showed to be a reliable method which provided satisfactory bond strength between the veneer ceramic and zirconia. This method might preserve the integrity of fixed dental crowns.


Subject(s)
Ceramics , Crowns , Methods , Saliva, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL